portion of this process. Since dependence of the transport velocity on energy-yielding metabolism is one of the theoretical requirements for active transport⁵, this strongly suggests that xylose is indeed actively transported. Similar evidence was adduced by Bihler, Hawkins and Crane¹⁰ to classify 6-deoxy-1,5-anhydro-pglucitol as active; although this compound was not found to be accumulated, its transport was inhibited by 4,6-dinitro-o-cresol and by anaerobiosis¹⁰.

Evidence for a two-stage mechanism in xylose transport. An appraisal of the above findings suggests that, like the active sugars 10,12,14, xylose transport occurs in two stages: (1) a phlorizin-sensitive, Na+-dependent, energy-independent entry into the epithelial cell and (2) an oxygendependent, DNP-sensitive step, probably equivalent to the energy-dependent accumulation step, typical of active compounds.

Concluding remarks. It seems clear that xylose, a sugar hitherto considered as non-active, is transported, in the

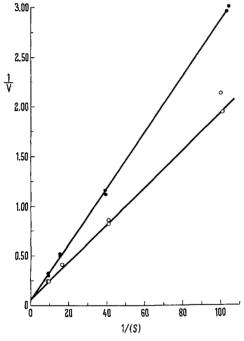


Fig. 2. Phlorizin competitive inhibition on xylose transport. Incubations in oxygen atmosphere were for 10 min in 4 ml Krebs-Henseleit phosphate buffer containing 2 ml of a mixture in varying proportions of isotonic $(0.3\,M)$ xylose and mannitol. o, xylose; \bullet , xylose plus $3.33\times 10^{-5}\,M$ phlorizin. Velocities $^{8.9,12}$ and mean substrate concentrations are plotted as reciprocals 13 . Other experimental details as in Figure 1.

Synthetic Peptides Related to Eledoisin¹

After the structure of eledoisin, a powerful vasodilating and hypotensive peptide isolated from the salivary glands of a mollusc², had been elucidated² and confirmed by synthesis⁸, we prepared a large number of analogues of this substance in order to investigate the influence of structural modifications on its biological properties. In a previous communication⁴ we listed in a Table those ana-

hamster small intestine, through the same pathway as the active sugars. The evidence includes demonstration of Na+ requirement, competitive inhibition by phlorizin, sugar active transport inhibition by xylose and reciprocal inhibition of active compounds on xylose transport. Although no xylose accumulation was observed, participation of an energy-dependent component in xylose transport in the hamster is evinced by the inhibitory action of anaerobiosis and dinitrophenol. Investigations now in progress 15 seem to indicate that the apparent lack of xylose accumulation against the gradient is due to the small affinity of this pentose for an accumulation process different from entry. This contention is supported by the lack of significant change in apparent Km values for xylose, as determined in aerobiosis or in anaerobiosis. In significant contrast, typical active compounds such as arbutin show a drastic decrease in apparent affinity for the (overall) system when nitrogen instead of oxygen is used while determining these constants. These observations, in agreement with an earlier suggestion by WID-DAS 16, suggest that sugar active transport involves two different processes, the first of which seems to be a typical facilitated diffusion process identical to the carriermediated xylose transport mechanism of Salomon et al. 6. It seems warranted to conclude that the properties of the overall sugar active transport process are indeed a composite of partial features of at least two distinct stereospecific processes. Evidence in favour of this hypothesis will be presented in a forthcoming series of papers 20.

Résumé. Dans les cellules épithéliales de l'intestin grêle du Hamster, l'absorption de xylose comprend deux étapes: (1) une entrée sensible à la phlorizine, et (2) une étape sensible au dinitrophénol, probablement équivalente à l'étape d'accumulation dépendant de l'énergie et typique des sucres actifs.

F. ALVARADO

Department of Enzymology, Instituto G. Marañón, Centro de Investigaciones Biológicas, C.S.I.C., Madrid (Spain), December 6, 1963.

- ¹⁴ J. Matthews and D. H. Smyth, J. Physiol. 154, 63P (1960).
- 15 F. ALVARADO, unpublished.
- ¹⁶ W. F. Widdas, J. Physiol. 125, 163 (1954).
- ¹⁷ H. A. Krebs and K. Henseleit, Hoppe Seyler's Z. 210, 33 (1932).
- ¹⁸ M. V. Tracey, Biochem. J. 47, 433 (1950).
- ¹⁹ M. Somogyi, J. biol. Chem. 195, 19 (1952).
- ²⁰ Acknowledgment. This investigation was supported by Research Grant No. AM 06666 from the National Institute of Arthritis and Metabolic Diseases, U.S. Public Health Service. The technical assistance of Miss Luisa Argomániz is greatly appreciated.

logues and partial sequences which have been found to be devoid or almost devoid of biological activity.

- ¹ Part II. See ⁴ for part I.
- ² V. Erspamer and A. Anastasi, Exper. 18, 58 (1962).
- Ed. Sandrin and R. A. Boissonnas, Exper. 18, 59 (1962).
- ⁴ B. CAMERINO, G. DE CARO, R. A. BOISSONNAS, Ed. SANDRIN, and E. STÜRMER, Exper. 19, 339 (1963).

		Relative biological activities					
No.	Chemical formula	Contraction of guinea-pig ileum	e	Hypotensive affect in at		Hypotensive effect in rabbit	
1	⊢OH H– Pyr-Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂ Eledoisin	100	1	00		100	
2	←OH Bz-Pyr-Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	100	1	00		→	
3 B	⊢NH ₂ ⊢OH <i>t-Pyr-Glu</i> -Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	100	1	00 ± 20		_	
4	⊢OH H - Glu-Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂	150	~			80	
5	⊢OH B2-PyrSer-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	100	_			100	
6	OH Bz-Pyr——Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	100	_	-	>	100	
7	Bz-Pyr¬	50	-	-		100	
8	⊢OH <i>Bz</i> -Pyr-Pro-Ser- <i>Nle</i> -Asp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	200 ± 14		50 ± 10		_	
9	_ОН <i>Bz</i> -Pyr-Pro-Ser- <i>Nva</i> -Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂	165	< 1	100		80	
10	−OH H——Pro-Ser- <i>Nle-</i> Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂	100	_	-	>	100	
11	,−OH H——Pro-Ser- <i>Nva</i> -Åsp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	130	> 1	100	>	100	
12	−OH H <i>——Ala-Phe-Ala</i> -Asp-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	7 5	_	-		200	
13	_OH H——Pro-Ser−——Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂	60		60		_	
14	−OH Bz-Pyr————Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂	30	_	-	<	< 50	
15	-OH H	20		50		_	
16	∩NH₂ H - Pyr-Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH₂	90±10	3	800 ± 80		_	
17	${}^{ extstyle NH_2}_{Bz ext{-Pyr-Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH}_2}$	175 ± 40	4	170 ± 90		_	
18	$-NH_2$ H——— Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH $_2$	75	-	-		200	
19		75	_	-		200	
20	$ however PNH_2 \ Bz ext{-Pyr-Pro-Ser-} Nle ext{-}Asp-Ala-Phe-Ile-Gly-Leu-Met-NH}_2$	5	_	-	<	< 10	
21	$_{_{1}}^{-}NH_{2}$ H	50	-	-		100	
22	$_{ m I}$ $_{ m$	20		50		-	
23	HPro-Ser-Lys-But-Ala-Phe-Ile-Gly-Leu-Met-NH ₂	100	-	-		250	
24	$_{\square}^{NH_2}$ Bz-Pyr-Pro-Ser- Asp -Lys-Ala-Phe-Ile-Gly-Leu-Met-NH $_2$	150	_	-		250	
2 5	$_{ m i}^{ m N}H_{ m 2}^{ m 2}$ H	105	> 1	100	>	100	
26	${\bf HPro\text{-}Ser\text{-}LysAla\text{-}Phe\text{-}Ile\text{-}Gly\text{-}Leu\text{-}Met\text{-}NH}_2}$	60 ± 10	2	230 ± 20		_	
27	Bz-Pyr-Pro-Ser-Lys ——Ala-Phe-Ile-Gly-Leu-Met-NH ₂	20	-	-		100	
28	H -Pro-Ser- $_{-}$ H	50	-	-		100	
29	$\label{eq:heaviside} \textbf{H} \textbf{Pro-Ser-} \textit{Nle} \textbf{Ala-Phe-Ile-Gly-Leu-Met-NH}_2$	50	-	_		80	
30	HPro-Ser-NvaAla-Phe-Ile-Gly-Leu-Met-NH ₂	75	-	-		250	
31	H——Pro-Ser——Ala-Phe-Ile-Gly-Leu-Met-NH ₂	90	> 1	100	>	100	

$[lpha]_{ m D}^{22}$ in 95% acetic acid Mp.			Electrophoretic mobility in 80%	Elemental		Eleme	mental analysis				
(c = 1)	(with dec.)	formic		formula		С	H	0	N	S	F
-44°	230°	0.48	Try	$C_{54}H_{85}O_{15}N_{13}S + H_2O$	C F	53.8 53.2	7.2 7.9	21.2 21.4	15.0 14.6	2.7 2.8	-
~48°	200°	0.56	Try	$C_{61}H_{91}O_{15}N_{13}S \\ + CF_{3}COOH$	C F	$54.3 \\ 54.0$	6.7 7.0	_	_	$2.3 \\ 2.4$	4. 3.
~52°	200°	0.53	Try	$C_{66}H_{100}O_{17}N_{15}S + CF_3COOH$	C F	53.6 53.2	6.7 6.9	_	_	$2.1 \\ 2.1$	3. 4.
~43°	200°	0.81	Try	$C_{54}H_{87}O_{16}N_{18}S + 2CF_{8}COOH$	C F	$48.6 \\ 48.4$	$6.3 \\ 6.4$	_	-	$\frac{2.2}{2.4}$	7. 6.
~35.5°	200°	0.5	Try	C ₅₆ H ₈₄ O ₁₄ N ₁₂ S + CF ₃ COOH	C F	53.8 53.6	6.6 6.9	_	_	$\frac{2.5}{2.5}$	4. 4.
-30°			•	C ₅₂ H ₇₈ O ₁₂ N ₁₁ S +CF ₃ COOH	C F	54.7 54.5	6.7 6.8	_	- -	2.7 2.7	4. 4.
	210°	0.53	Try		C F	60.3 59.8	7.0 7.3	17.2 17.0	13.1 13.3	2.3 2.6	_
~48°	240°	0.21	Try	C ₇₀ H ₉₇ O ₁₅ N ₁₃ S	С	58.0	7.3	19.0	13.3	2.5	_
-41°	250°	0,32	Try	$C_{61}H_{91}O_{15}N_{12}S$	F C	57.8 57.7	7.6 7.1	18.6 19.2	13.6 13.5	2.4 2.6	_
-60°	2 40°	0.18	Try	$C_{60}H_{88}O_{15}N_{12}S \ C_{49}H_{79}O_{13}N_{11}S$	F C	57.5 52.1	7.4 6.9	19.2 -	13.4 -	2.5 2.7	- 4.9
-49°	230°	0.45	Try	+CF ₃ COOH C ₄₈ H ₇₇ O ₁₃ N ₁₁ S	F C	51.7 51.7	6.7 6.8	_	_	2.7 2.8	5.4 4.5
-49°	200°	0.57	Try	+CF ₃ COOH	F C	51.4 53.5	6.8	_		2.8	4.5
-27°	250°	0.54	Try	$C_{50}H_{75}O_{12}N_{11}S + CF_3COOH$	F	53.1	6.7	-	-	2.8	4.
~46°	250°	0.53	Try	$^{\mathrm{C_{43}H_{68}O_{12}N_{10}S}}_{+\mathrm{CF_{3}COOH}}$	C F	50.8 50.2	6.6 6.7	_	13.2 13.3	$\frac{3.0}{3.0}$	5.4 5.8
−36.5°	260°	0.2	Try	$C_{47}H_{67}O_{11}N_{9}S$	C F	58.4 58.0	7.0 7.4	$18.2 \\ 18.4$	13.0 13.3	$3.3 \\ 3.4$	_
-32°	250°	0.62	Try	$C_{85}H_{56}O_{9}N_{8}S + CF_{3}COOH$	C F	$50.4 \\ 50.2$	$6.6 \\ 6.8$	_	$12.8 \\ 12.9$	$\frac{3.6}{3.6}$	6.3 7.0
-	195°	0.58	Try	$C_{54}H_{86}O_{14}N_{14}S + CF_{3}COOH$	C F	51.7 51.4	6.7 6.8	_	15.1 15.5	$\frac{2.5}{2.5}$	4.4
~53.5°	220°	0,64	Try	$C_{61}H_{92}O_{14}N_{14}S + CF_3COOH$	C F	54.4 54.4	6.7 7.0	-	14.1 14.0	$\frac{2.3}{2.3}$	4.
			•	$C_{49}H_{81}O_{12}N_{13}S + 2CF_3COOH$	C F	48.8 48.2	6.4	_	-	2.5 2.6	8.8 9.0
~37.5°	220°	0.88	Try	C47H79O12N13S	C F	47.9	6.4	-	_	2.5	8.8 8.3
~30°	240°	0.86	Try	+2CF ₃ COOH	С	47.3 58.0	6.4 7.3	17.7	14.4	2.5 2.5	-
-62°	270°	0.16	Try	$C_{61}H_{91}O_{14}N_{13}S$ $C_{49}H_{80}O_{12}N_{12}S$	F C	57.5 52.1	7.5 7.0	17.4 	14.1	2.4	4.9
−47°	240°	0.55	Try	+CF ₃ COOH	F C	51,5 55.0	7.0 7.5	- 16.8	- 16.5	$\frac{2.6}{4.2}$	5.0
-38°	230°	0.62	Try	$C_{35}H_{57}O_8N_8S \ C_{49}H_{82}O_{11}N_{12}S$	F C	55.1 49.9	7.8 6.7	17.3 -	16.3 -	4.2 2.5	8.9
−45°	200°	0.84	Try	$+2CF_3COOH$ $C_{81}H_{92}O_{14}N_{14}S$	F C	49.5 54.4	6.7 6.7	_		$\frac{2.7}{2.3}$	8.1 4.1
-52,5°	200°	0.54	Try	$+ CF_3COOH C_{49}H_{81}O_{12}N_{13}S$	F C	54.0 48.8	7.1 6.4	_	_	2.4 2.5	4.6 8.7
~39°	200°	0.82	Try	$+2CF_{3}COOH C_{45}H_{75}O_{10}N_{11}S$	F C	48.3 49.4	6.6 6.5	_	-	2.7 2.7	8.0 9.0
-41°	215°	0.88	Try	+ 2CF ₃ COOH C ₅₇ H ₈₆ O ₁₂ N ₁₂ S	F C	49.0 55.5	6.3 6.9	_	_	3.0 2.5	9,6 4.
-52°	220°	0.5	Try	$+CF_3COOH$ $C_{53}H_{87}O_{13}N_{13}S$	F C	54.9 49.7	7.3 6.5	_	-	2.5 2.3	4.6
-43.5°	250°	0.85	Try	+2CF ₈ COOH	F	49.2	6.3	-	_	2.6 3.0	8.6 5.4
-46°	220°	0.64	Try	$C_{45}H_{74}O_{10}N_{10}S + CF_3COOH$	C F	53.1 52.5	7.1	_	_	3.1	6.2 5.4
-47°	230°	0.66	Try	C ₄₄ H ₇₂ O ₁₀ N ₁₀ S +CF ₃ COOH	C F	52.8 52.5	7.0	_	_	3,1 3,1	6.0
-49°	240°	0.58	Try	$C_{39}H_{63}O_{9}N_{9}S$ $CF_{3}COOH$	C F	52.0 51.8	6.8 6.7	_	_	$\frac{3.4}{3.4}$	6.6 6.3

In the present paper we are reporting on some of the analogues or partial sequences which have been found to be highly active, in some cases even more so than eledoisin itself. The Table indicates the level of activity on guineapig ileum, and, where comparisons have been made, on rabbits' and cats' blood pressure; all data referred to eledoisin taken as 100. (Where no standard deviation is given, data may be regarded as good approximations only.) In addition, the physical properties and elemental analysis of these peptides are given. The methods used for the synthesis of these peptides are described elsewhere in detail⁵.

The data given in ⁴ have furnished evidence that any alteration to the six amino acids of the C-terminal moiety of the eledoisin molecule (i.e. -Ala-Phe-Ile-Gly-Leu-Met-NH₂) is likely to yield biologically inactive peptides. This was recently confirmed by another group of workers. From the present data it will be evident that alterations to the five amino acids of the N-terminal moiety of eledoisin (i.e. H-Pyr-Pro-Ser-Lys-Asp(OH)-), even changes affecting the acid or basic groups, do not interfere to any great extent with biological activity. It thus appears that almost one-half of the peptide chain can be modified or

even left out without substantial loss of biological activity. Nevertheless, such modifications do affect the relation between the biological activities, as measured in the different tests, in an unpredictable manner?

Zusammenfassung. Die Eigenschaften einer Serie von synthetischen Peptiden, die mit Eledoisin strukturell und wirkungsmässig verwandt sind, werden beschrieben.

E. STÜRMER, ED. SANDRIN, and R. A. BOISSONNAS

Medizinisch-biologische und Pharmazeutisch-chemische Forschungslaboratorien der Sandoz AG., Basel (Switzerland), March 13, 1964.

- ⁵ ED. SANDRIN and R. A. BOISSONNAS, Helv. chim. acta 46, 1637 (1963); 47, 417 and in press (1964).
- 6 E. Schröder and K. Lübke, Exper. 20, 19 (1964).
- ⁷ Further analogues of eledoisin are described and discussed in the following paper (Part III), by L. Bernardi, G. Bosisio, F. Chillemi, G. de Caro, R. de Castiglione, V. Ersparmer, A. Glaesser, and O. Goffredo (Exper. 20, 306 (1964)). The results reported by these authors are in line with our own findings.

Synthetic Peptides Related to Eledoisin¹

In a previous paper ² a first group of synthetic peptides related to eledoisin was presented. We wish now to report briefly some chemical data and biological actions of a new group of peptides similarly related to eledoisin or to its fragments ³. While the problem of the relationship between the chemical structure and the biological activity of eledoisin-like polypeptides will be discussed in detail elsewhere, we wish, on the grounds of the former ² and present data, to call attention here to a few essential points:

- (1) It is possible to reduce consistently the size of the eledoisin molecule, without any drastic reduction in its biological activity, by means of a progressive elimination of the N-terminal amino acid residue. A minimum of five amino acid residues is needed in order to have an appreciable activity (No. 8). This increases sharply in the C-terminal hexapeptide (No. 7) and reaches a high level in the octapeptide (No. 5). Maximum activity is attained in the nonapeptide (No. 4), which is approximately twice as active as eledoisin, even if assayed in the dog blood pressure.
- (2) The structure of the highly active hexapeptide Ala-Phe-Ile-Gly-Leu-Met-NH₂ (No. 7) has been altered stepwise by changing amino acid residues; from the data reported in the Table it may be seen that substitution of the phenylalanine residue produces a tremendous decay in the specific biological activity. The same is true for any substitution of the leucine and methioninamide residues. The only striking exceptions are so far represented by compounds Nos. 39 and 40, where the substitution of the methioninamide with ethioninamide has caused a 5- to 6-fold increase in activity 4.

Changes in biological activity produced by substitution of one of the three remaining amino acids are more irregular and apparently unpredictable. A high degree of activity is present in compounds Nos. 26, 27 and 29, where isoleucine has been replaced by valine and phenylalanine. However, compounds Nos. 25 and 28, where isoleucine has been replaced by leucine and alanine, are practically

devoid of activity. Likewise substitution of glycine furnishes in some cases active compounds (Nos. 30 and 32), in other cases inactive compounds (No. 31). Finally, alanine can be replaced, often with advantage, by a number of amino acids, the most interesting being lysine (No. 14), which considerably enhances the biological activity. It may be further seen from the Table that through suitable substitution of two amino acid residues (Nos. 29 and 40) it is possible to obtain hexapeptides which are more active, even on molar basis, than eledoisin itself.

- (3) The introduction of a D. amino acid residue into the molecule does not necessarily destroy the biological activity. In the case of No. 20 as compared with No. 16 this activity is rather enhanced.
- (4) Compounds Nos. 41 to 47 show that a free terminal amino group is not necessary for the biological activity.
- (5) The activity ratio between eledoisin and a given eledoisin-like polypeptide may vary conspicuously according to the different preparation of test-objects used in the bioassay.

Riassunto. Vengono descritte le proprietà di una serie di peptidi sintetici affini all'Eledoisina sia per la struttura che per l'attività.

- L. Bernardi*, G. Bosisio*,
- F. CHILLEMI*, G. DE CARO**, R. DE CASTIGLIONE*,
- V. Erspamer**, A. Glaesser*, and O. Goffredo*

Laboratori ricerche, Farmitalia, Milano*, and Istituto di Farmacologia dell'Università di Parma** (Italy), March 13, 1964.

1 Part III. For part II see 3; for part I see 2.

B. CAMERINO, G. DE CARO, R. A. BOISSONNAS, Ed. SANDRIN, and E. STÜRMER, Exper. 19, 339 (1963).

In the paper by E. Stormer, Ed. Sandrin, and R. A. Boissonnas (Part II) in this same issue (Exper. 20, 303 (1964)) another large group of peptides related to eledoisin is presented and discussed.

⁴ The biological activities of various polypeptides having as C-terminal amino acid S-alkyl-homocysteinamides and their homologues will be the subject of a later report.